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ROBUST ESTIMATION OF 
STRUCTURAL BREAK POINTS 

INMACULADA FITENI 
Universidad Carlos III de Madrid 

This paper proposes robust M-estimators of dynamic linear models with a struc- 
tural break of unknown location. Rates of convergence and limiting distributions 
for the estimated shift point and the estimated regression parameters are derived. 
The analysis is carried out in the framework of possibly dependent observations 
and also with trending regressors. The asymptotic distribution of the break loca- 
tion estimator is obtained both for fixed magnitude of shift and for shift with 
magnitude converging to zero as the sample size increases. The latter is essential 
for the derivation of feasible confidence intervals for the break location. Monte 
Carlo simulations illustrate the performance of asymptotic inferences in practice. 

1. INTRODUCTION 

The development of valid statistical inference tools in the presence of a struc- 
tural break with unknown location has been a major concern in the statistic 
and econometric literature. Among the survey papers on this topic we mention 

Deshayes and Picard (1986), Krishnaiah and Miao (1988), Csorgo and Hor- 
vath (1988), Huskova and Sen (1989), Huskova (1997), and Stock (1997). There 
are also several monographs, such as Broemeling and Tsurumi (1986), Hackl 

(1989), Hackl and Westlund (1989, 1991), and Brodsky and Darkhovsky (1993). 
A complete review related to this problem can be found in Cs6rgo and Hor- 
vath (1997). 

The main objectives are to test whether a change in the model parameters 
has occurred and, if so, to estimate its location and magnitude. Testing for the 

presence of a structural break is a research topic with a long-standing tradition. 

Particularly important contributions include the CUSUM test of Brown, Dur- 
bin and Evans (1975) and Hackl (1980) and its robust versions in Huskova 

(1990), the Wald, Lagrange multiplier, and likelihood-ratio-like tests of An- 
drews (1993), the exponentially weighted tests of Andrews and Ploberger (1994), 
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and the predictive tests of Ghysels, Guay, and Hall (1997), among others. A 
number of studies concerning the issue of multiple structural changes are emerg- 
ing; see, e.g., Andrews, Lee, and Ploberger (1996), Garcia and Perron (1996), 
Liu, Wu, and Zidek (1997), and Bai and Perron (1998). 

The literature addressing the issue of structural change points estimation is 
comparatively sparse, however. First developments include the maximum like- 
lihood estimation of the break date with a simple shift. This is considered by 
Hinkley (1970), Bhattacharya (1987), and Yao (1987) for the independent and 
identically distributed (i.i.d.) case, by Picard (1985) for a Gaussian autoregres- 
sive process, and by Feder (1975) for segmented regressions. Bai (1994) esti- 
mates the unknown change point by least squares, considering a linear process 
for the error term. Bai and Perron (1998) generalize this result allowing for 
multiple shifts in the regression model. But these classical estimators are sen- 
sitive to deviations from the model distribution, to outlying observations, and 
to model misspecifications, which can produce disastrous effects on the esti- 
mates. Departures from the assumed model can be solved, in part, by estimat- 
ing nonparametrically the underlying regression model, as proposed by Carlstein 
(1988), Dtimbgen (1991), Chu and Wu (1993), and Delgado and Hidalgo (2000), 
among others. Alternatively, robust methods, which are insensitive to small de- 
viations from the assumptions, can also be applied. Bai (1995) proposes using 
the LAD estimator, which has good properties in terms of robustness (qualita- 
tive robustness, B-robustness, and maximum breakdown point). However, this 
estimation procedure is highly inefficient under normality. Huskova (1997) pro- 
poses an M-estimator for the location of a change in the mean of a sequence of 
i.i.d. observations, obtaining the best trade-off between efficiency under the true 
model and robustness under a possibly thick-tailed distribution. 

In this paper, we consider a linear regression model with structural change 
and propose the M-estimators of both the regression parameters and the shift 
location, which jointly optimize a robust objective function. Most of the esti- 
mators can be obtained as particular cases of this one. To perform inferences, 
our main goal is to derive the rates of convergence and the limiting distribu- 
tions of the estimators, which will be obtained both for fixed and for shrinking 
magnitude of shift. The latter is essential for the derivation of feasible confi- 
dence intervals for the break point location, provided that only in this case the 
asymptotic distribution will not be case dependent. These asymptotic results 
also hold for the scale invariant version of the estimator, but rather restrictive 
assumptions will be required, as in the standard context of no change by Yohai 
(1987). General forms of serial dependence and also trending regressors will 
be allowed. 

The rest of the paper is organized as follows. Section 2 introduces the model 
and regularity conditions. The asymptotic properties of the M-estimators are 
studied in Section 3, under the two assumptions on the magnitude of shift, 
fixed and converging to zero. In Section 4, the finite sample performance of 
the asymptotic approximation is illustrated by means of a small Monte Carlo 
experiment. 
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2. THE MODEL AND ASSUMPTIONS 

Let {Zt = (Yt,Xt)}t=l be a sample of Z, a R X RP-valued stochastic process 
defined on the probability space (fl, T, P), such that 

Yt = X,3 1oI(t -' [nro]) + Xt3201L(t > [nto]) + Ut, (1) 

a linear model with a single shift, where I(A) is the indicator function of the 
event A, [ ] represents the nearest integer function, and {Ut }tl is the sequence 
of disturbance terms. Here /3o E 0 C RP, for j = 1 and 2, are the unknown 
regression parameters for each regime and r0 E fI C (0,1) represents the shift 
point location, which is also unknown. The size of the jump will be denoted by 
A = /o - 120. 

Under the maintained hypothesis that the shift exists, that is, A + 0,1 we 
propose to estimate the unknown parameter vector so = (1/o3, I8o, ro)', which 
will be defined by the following assumption. 

AO. 

50 = argmin lim E[Sn(5)], (2) 
E(02Xnx n--oo 

with Sn(S) = Sln(3, 7) + S2n(12, ), such that 

1 [n] 
Sin(3, T) = - p(Yt - XI 3) and 

n t=l 

1n 
S2n(/T) = - p,(Yt 

-X ), (3) 
n t=[nr]+ 1 

where p,-(u) = p(u/l), p:R -> R is a function that identifies the model 

parameters, and o- is such that lim oon-l1 iE[p(Ut/r)] = d, for d = 

E, [p(u)] and 1 represents the standard normal distribution. 

Remark 1. Given the model (1), the "identification assumption" AO is not 
satisfied for every p-function. At the end of this section, we provide the ade- 
quate setup for AO to hold. As will be shown in Proposition 2, the requirements 
assumed to obtain the robust and asymptotic properties for the estimators will 
assure the fulfillment of AO. 

Remark 2. Each p-function defines a particular linear predictor of Yt given 
Xt, with changing parameters at a given moment of time [nro]. For instance, 
p(u) = u2 defines the least squares predictor, p(u) = lul the least absolute 
deviation predictor, and p(u) = 1u2I(ul c) + IU I(lul > c) is the Huber 

predictor, a compromise between the previous two, given a suitable constant c. 
Different p-functions define, in general, different parameter values though, in 
certain circumstances, they can be identical. For instance, when the conditional 
distribution of Yt given Xt is symmetric with respect to its mean, which is a 
linear combination of the Xt with changing parameters, least squares (LS), least 
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absolute deviations (LAD), and Huber predictors have identical values. How- 
ever, the resulting estimators will have different statistical properties. 

A natural estimate of eo will be given by 

~n = arg min Sn (), (4) 
ecI2xHI 

the sample analogue of (2), which can be obtained by implementing an itera- 
tive procedure. First, for each T E II, we obtain the regression parameter esti- 
mators pre-[nT] and post-[nr] as 

,38j (') = arg min Sj, (/, r), (5) 
?EO 

for j = 1 and 2, respectively. Second, the shift point will be estimated as the 
sample partition that minimizes the objective function concentrated in T, i.e., 

rn = argmin(S1,(/i,n(Tr),) + S2n(82n(T), 7)). (6) 
T7E 

Thus, n, = 
(/3S,/, 3, T n)', where f3n 

= 
yn(7r) are the coefficient estimators 

for j = 1 and 2. The size of the jump will be estimated by An = PIn -32n. 

Remark 3. To obtain a scale invariant estimator, we must consider the ob- 
jective function in (4) satisfying (3) with p,(u) replaced by p, (u), where Sn is 
a consistent estimator of or, which can be obtained either separately or simul- 
taneously with n. This estimator is called "M-estimate with general scale." A 
consistent and robust estimator of the scale can be obtained from a preliminary 
consistent estimator ~n of o0, such that 

In Tn - I n /V - ^ R\ 
( t n) t 

\ t Xt 2n 

t=1 S n t=[nT,I . + l Sn 

for a given function X: R -4 R. For example, the median absolute deviation 
(MAD) is defined by X(u) = sign(lul - 1), or Huber's proposal is given by 
X(U) = 12(u) - b, for b = Eq[/2(u)], where if(u) = Op(u)/du is the score 
function. If we consider different scales for each subsample, the estimator could 
be defined as S^ = slI(t 5 [nIn]) + S2n(t > [nTI]), where 

Y,-X t x 3 nn , - X t 2n 
LnZth](Y- X 

//. 
= 0 and 0. 

t=l Sln t=[n]+ I 
S 2n 

In Corollary 2, we provide the conditions under which the coefficient estima- 
tors obtained previously will be asymptotically equivalent to those obtained 
with an assumed known scale for the error term. Henceforth, for simplicity and 
without loss of generality, we will consider the objective function given by (3) 
and (4) for cr = 1, such that po(u) = p(u). 
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As a matter of notation, we let || || denote the Euclidean norm of a vector 
or a matrix and l']|lr the Lr norm of a random q-vector (i.e., IIlXl = 

(q=1 EX, Ir)l/r). The symbol -P represents convergence in probability, >d 

convergence in distribution, equivalence in distribution of events and = 
weak convergence in the space D[0,1] under the Skorokhod metric (see, e.g., 
Pollard, 1984). 

Next, we define the concept of near epoch dependence (NED), the type of 
asymptotically weak dependent structure assumed for the data. A NED process 
will be "approximately" mixing in the sense of being well approximated by the 
near epoch of a mixing process and includes linear processes, strong mixing 
processes, and many other dependent structures as special cases (see, e.g., Da- 
vidson, 1994). Under suitable conditions, it will have properties permitting the 
application of limit theorems, of which the mixingale property is the most im- 

portant. This idea was introduced by Ibramigov (1962), and has been formal- 
ized in different ways by Billingsley (1968), McLeisch (1975a, 1975b), Bierens 
(1981), Andrews (1988), Wooldridge and White (1988), Hansen (1991), and 
Potscher and Prucha (1991), among others. 

DEFINITION 1. Let {Vt}X0 be a strong mixing sequence, possibly vector- 
valued, on a probability space (l, ,P) and define _t-mt+m = o((Vt-m,..., 

Vt+m) such that {tmo-+m}=O t is an increasing sequence of o-subfields of g. For 
r - O, a sequence of integrable random vectors {Wt}Too is said to be Lr-NED of 
size -qo on the strong mixing base {V} of size -q1 if there exists a sequence of 
nonnegative constants {dt}7 and a nonnegative sequence {vm}j, such that 

vm - 0 as m -> O, and, 

(i) for r = O, Pr(l W- E[W,tltt+mjg ] > ) < d,vm, VE > 0, 
(ii) for r > 0, Wt - E[W,tlgt+ ]lr < dt,vn 

holdfor all t- 1 and m - O. Besides, Vm = O(m-q) for all q > qo and {am}mm0, 
the sequence of the strong mixing numbers of {Vt}, is such that am = O(m-q) 

for all q > ql. 

Observe that an Lq-NED sequence will be Lp-NED for 1 < p < q by Lia- 

punov's inequality and for 0 = p - q by Markov's. The statistical properties of 
the resulting estimators are obtained in the next section under the following set 
of assumptions Al and A2. 

Al. Assumptions on p(.). 

A .1. Let p: IR -> R be a convex real function, twice continuously differentiable, 
with first derivative 0f and such that (i) limut>+ p(u) = oo, (ii) p(u) = p(-u), 
and (iii) p(u) is nondecreasing for u - 0. 

A1.2. ': R I-> R is a bounded function, and there exists a constant m > 0 such that 
ir(u) = a > 0 for u > m. 
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A2. Model Assumptions. Given 0 E 0, define the sequence {r7t()}t<n, where 

r7t() = f(Ut + - 'Xt)Xt for each t. This sequence arises from the first-order 
conditions, which outline the M-estimator of the regression coefficients, evalu- 
ated in a neighborhood O'Xt of the error term, given the model (1). Let rt = 

rt(Op), Vt -< n, where Op is a p-vector of zero. The subscript t of these se- 

quences indicates the dependency on the data {Zt, and 0 could be dependent 
on n, in which case it will be denoted by 6n. 

A2.1. 0 C RP is a compact and convex set. 
A2.2. T0 E I, provided that n has closure in (0,1). 
A2.3. {Zt = (Yt,X[)'}t, is a random vector with domain in Z, Lo-NED on a 

strong mixing base {w: t = ...,0,1,...} with constants dt = 1, where Z is a 
Borel subset of IRp+l defined on the probability space (l, , P). Let Fn 
n-l ~ 1 (Z,), such that {yT,}n1L is tight on Z. 

A2.4. For some r > 2, {Th}t}n is a random vector sequence of mean zero, L2-NED 
of size - on a strong mixing base {wt:t = ...,0,1,...} of size -r/(r - 2), 
with constants dt = 1 and supt_n E7t 11 r < 00. 

A2.5. V0 E 0, r1t(O) is Borel measurable in Zt and 7(0O) = 7qt(O)/10', continuous 
in (Zt, ) E Z X 0 by Al.l, satisfies that supt,nE[supoeoll (O) ll+] < 0o, 
for some e > 0. 

A2.6. There exists a bo such that, for all b > bo, the smallest eigenvalues of the 

positive matrices b-1 [o+b1 I[b t(0) and b -1 , ]-bt() are bounded 

away from zero uniformly in 0 E 0. 
A2.7. The limn_o n-~ 1[ ' E [t ()] exists uniformly in (0, r) E 0 X I and equals 

rM(0) V(0, r) E 0 X I, where M(0) = limn,o n-1 t=l EE[t(0)] is a pos- 
itive definite matrix V0 E 0. For notational convenience, define M = M(Op). 

A2.8. Vr E (0,1), lim, vvar[n-1/2 ?E[nrl] = S, where S = lim X 
var[n-l/2 S==l t] is a finite and positive p X p matrix. 

Assumptions Al are standard in robust estimation. The differentiability of p 
allows one to solve (5) from the first-order conditions; i.e., we obtain 

{38n(T)}= - E/3 : [fl (80t -/3) 
f n ) 

{ 2. =T)} = : E E E t ?(- 

as estimators of 

f M][nr] 
{flT(r)} = f G E ': lim E E[1th(iot- f)] =0 , 

n---oo t= 1 

n 1 
{I2(T)} 

= EG(E lim E[,lt(ot-3)]=O}, 
n->o t=[nr]+l J 

respectively, where 8ot = PiloI(t < [nr0]) + 32oI(t > [nTo]). For each , 

{/31n()} and {32n(T)} define those subsets of 0 where the objective function 
in (4) is minimized given the observed data. Their convexity is guaranteed by 
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the convexity of p. Moreover, Al assure that {ji1(r)} and {(2(T)} will be non- 

empty, convex, and compact sets. If p were also strictly convex, these subsets 
of 0 would shrink to an unique point (Huber, 1964), and the estimation prob- 
lem could be simplified.2 But this requirement rules out estimators like Hu- 
ber's, which could be of interest. The same occurs with the condition of a 
continuous second derivative of p, which we assume in Al.1. Nevertheless, in 
Proposition 1, which follows, we obtain a uniformly convergent smoothed ver- 
sion of the Huber score function, which will prevent us from excluding this 
type of estimator. The rest of the requirements stated in Al guarantee robust- 
ness against heavy-tailed distributions of the error term. 

The asymptotic properties of the parameter estimators are obtained assuming 
convexity of the parametric space, in A2.1 and A2.2. The latter also considers 
the shift location far away of the interval extremes. The change point is repre- 
sented by [nro], such that each temporal segment increases proportionately with 
the sample size. Assumptions A2.3 and A2.4 are standard requirements of weak 
dependence outlined for this robust regression context. These assumptions are 
general enough to allow more primitive dependence conditions on both residu- 
als and regressors, taking into account that certain transformations of NED se- 
quences preserve this type of dependence structure (see, e.g., Davidson, 1994, 
Sec. 17.3). For simplicity and without loss of generality, we set the constants 
{dt} to 1. This could be relaxed to include trending moments, and the results 
would be easy to obtain. Assumption A2.5 is assumed because the break point 
is estimated by a global search. Assumption A2.6 states that there must be enough 
observations near the true break point so its identification could be possible. As- 

sumptions A2.7 and A2.8 are standard requirements to obtain covariance sta- 
tionary conditions for the asymptotic distribution of the estimated parameters. 

PROPOSITION 1. Given the Huber score function, f (t) = ct min{ t I c, 1}/ 

It , for a suitable constant c, we obtain that the following sequence of twice 
differentiable functions, 

1 A 
C, t> c + 

2nP 

PnP 2 c 1 1 1 -- t2 +np c+ - t- +- c- - - c+- 
-2 2np 2 2-2 8n 2nP 2np 

hn(t)= t, It < c- ~n 2np 

ngp n1) (11Pc2 1 - t2 +nP c+ I t+ - - +-- -c t -c+ -- 
2 2n/ \ 2 2 8np 2nP 

-c, t <-c-- 
K , 2nP 2 

converges to if(t) uniformly in t, for p > O, a fixed c, and large n. 

Thus, the asymptotic results derived for smooth qf functions can apply to 
Huber's as in Bloomfield and Steiger (1983, Theorem 2), where LAD estima- 
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tors are considered. This is an alternative way to solve the problem with a non- 
differentiable objective function, which has already been considered by others 
such as Jureckova and Sen (1993). The latter outline this type of function as a 
sum of three functions with different degrees of smoothing and study the as- 
ymptotic behavior of each one. Proposition 1 can be extended to another non- 
differentiable functional. The proof is omitted here to save space and can be 
found in Fiteni (1999), available upon request. 

Remark 4. As pointed out earlier, the serial dependence conditions estab- 
lished in A2.3 and A2.4 allow different forms of temporal dependence for the 
dependent variable and/or the perturbance term, subject to suitable restric- 
tions on their moments. However, the stationarity requirements A2.7 and A2.8 
rule out models with a structural change in the marginal distribution of the 
regressors, which can be of interest. For instance, the linear processes are ex- 
cluded when the coefficients associated with the lagged dependent variables 
are subject to change. To see this, consider an AR(1) model with a structural 
break, i.e., Ut = Y - p Yt-lI(t < [nr0]) + p2Yt-lI(t > [nr0]) and let {Ut} be 
a scalar sequence i.i.d. (0,o-r2). Note that the process {rt}j will be L2-NED 
on {Ut} if {(t(Ut)} is L2-bounded and Ipil < 1 for i = 1,2.3 Moreover, 
we have that S = (rofl + (1 - 

o)12), where fi = E[f2(U)]o,2/ (1 p2), 
for i - 1,2. But condition A2.8 does not hold. In fact, we have that 

lim,, varEn- /2 [ U)Y-] = (T7 + ( - To)(2- Q)I(7 > 70)) 
rS; i.e., the second moments matrix of the cumulated data does not grow lin- 
early in this case, as assumed in the paper. But, in general, this requirement 
could easily be relaxed (the same argument will apply for A2.7) supposing 
that there also exists a shift in the second moments of the regressors at the 
time [nT0] so that, for each T E II, 

[nr] 

lim var n-1/2 E rt = rS1 + (7 - 70)(S2 - S)I(r > T) = S(), (8) 
n-c>o t=l 

with S1 = lim,_ var[(nrT)-1/2 E[n_17]rt] and S2 = lim,,var[(n - n-o)-'/2 
f=[nTo]+l 1t] finite and positive matrices. And the asymptotic results of Sec- 

tion 3, which follows, could also apply considering that S = S(1). 

Finally, as pointed out in Remark 1, we study in the following proposition 
the identification conditions of 50 that assure AO; see Rothenberg (1971) regard- 
ing the identification concept. 

PROPOSITION 2. Assume (1), Al.], A1.2, A2.1-A2.5, and A2.7; then AO 
holds. In particular, 

(2.1) For each T, the parameters p1j(), defined by (7), are obtained as 

P 1() = /i + ('O - T)M1 ' M(02)'AI(T > To), 

12(r) = 120 + (7' - T)M2 M(06)'AI(r7 70), 
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where M1 = 7oM(01) + (r - ro)M(62), M2 = (r0 - r)M(0) + (1 - ro)M(02), 
ti = 8i(Il(r) - 3iO), and i = 6i(/32(T) - 1Pi), for i = 1,2, such that 
o < 8,, i < 1. 

(2.2) There is no parameter vector (13((r ), (r),T)' E 0 X II observationally 
equivalent to eo, which will be defined by (2) in AO. 

Observe that, by (2.1) in Proposition 2, when r equals the true change point 
location, the parameter vector (P3'(T),P3(T))' coincides with the true regres- 
sion coefficients (/13o,,30)'. For the LS (a particular case, with i (u) = u), 
it holds that M1-'M(62)'A = r-l and M21M(61)'A = (1 - r)-lA, and 
(/1 (), S2(T))' will be defined by means of certain linear combinations of the 
true regression parameters, with weights depending on the relative position 
between the points r and To.4 The consistency property of the estimator n 
can be deduced straightforwardly from the preceding proposition. 

3. ASYMPTOTIC PROPERTIES 

To establish the asymptotic distribution of the estimators, first we need to de- 
rive their rates of convergence. These are obtained in Theorem 1, which follows. 

THEOREM 1. Under Al.1, A1.2, and A2.1-A2.7, it holds that 

(jn-jo) = OpP f(o), forj =1 and 2, 

(7 - o) (n ) (9) n ,=o ~i nlJnAI2 
' 

The rate of convergence is inferred from the global behavior analysis of the 
objective function Sn(e) over the whole parameter space. To this end, observe 
that the parameter estimator (4) can also be defined as 

,n = argmin (S,() -Sn(o0)), (10) 
:EO2XIH 

and we want to prove that Ve > 0, 3C > 0 such that 

Pr{(l- 
o l> 

) ( 
u 

3f& 
-&l > 0 ) U ( ll -oll > )} 

< 3e. (11) 

The upper bound of 3 is chosen only for notational convenience, and, without 
loss of generality, it corresponds to one s for each of the three sets. By the 
definition of ,n in (10), Sn(',) - S,(So) ' 0, so the left side of (11) will be 

upper bounded by 

Pr{ inf (Sn() -Sn(0))< 0} =Pr{ sup (Sn(o) -Sn()) > 0, 
AUBUD AUBUD 
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where the sets A, B, and D are defined as follows: 

A =p/3I E / 11-/3-ol|> I> (12) 

B f32 O/ /32-/3201> X} (13) 

D= rEII/|| r-ol> n>l2) (14) 

Thus, Theorem 1 is a consequence of the following result. 

THEOREM 2. Under AI.], A1.2, and A2.1-A2.7, it holds that Ve > 0, 
3C > 0 such that 

Pr sup (S,(0o) -Sq,(s))> 0 < 38, 
AUBUD 

where A, B, and D are defined in (12), (13), and (14), respectively. 

The estimators of the regression coefficients are, as usual, /n-consistent. 
The rate of convergence corresponding to the break point estimator depends on 
the magnitude of the shift, in such a way that the larger the break is, the easier 
its identification will be. This fact will also allow one to incorporate two stan- 
dard settings for A: fixed and shrinking to zero as n increases. For the latter, it 
will be denoted by Ah, such that |11Aj - 0 with n ||A,2 - oo. Then, from (9), 
the rate of convergence of ,n is obtained to be Op(n~ ) when the break is con- 
stant and Op(n-1 lA,1 -2) for a local change. In both cases this estimator will 
be consistent, however. 

As viewed previously, Theorem 2 describes the global behavior of Sn(c) on 
the whole parametric set )2 X I. In this context, the rate of convergence must 
always be obtained before the asymptotic distribution, given that the arg min 
functional used to define the location estimate is not continuous when the min- 
imized function is defined on an unbounded set, and the continuous mapping 
theorem would not follow. But the limiting distribution can be obtained by study- 
ing the local behavior of this objective function on a compact set determined 
by Theorem 2. Thus, /j, forj = 1 and 2, is constrained to be in an n-1/2 neigh- 
borhood of the true parameter values, /3o, for j = 1 and 2, respectively, and a 
similar comment applies to the shift point, in a neighborhood of ro determined 
by its rate of convergence. This will allow us to reparametrize the objective 
function (10) in a suitable form as follows: 

A, (v) = S,(o + (n- 1/2v n- 1/2v,n -1PA 3)' - S (G0), 

for v = (vI,v, v3)' E VN C RP X RP X IR, with VN = {v : 1|lvj < N, = 1,2,3}, 
a compact set defined for an arbitrary constant N > 0. Besides, PA = O((hIAl-2), 
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such that we will consider PA = O( AJ,l-2) for the decreasing case or PA = 1 
for a constant A. Thus, 

j = Ojo + n-1/2vj, forj= and 2, 

T = T + n- PV3. 

The weak convergence result follows taking into account that f\n(/3i - 

j0o) = V, for j = 1 and 2, and n({n - t) = PAV3, such that (vl,v2,Y)' 

argminv,E An(v), defined on a compact set for N < oo. This is obtained in 
Theorem 3, which follows. 

THEOREM 3. Under Al.1, A1.2, and A2.1-A2.8, it holds that 

(i) For the coefficient estimators, 

_0 
-l-~1(l0n _1)) M-1S1/2 

O1 /2pxp 
(15) 

,NJ-n ( ^O p (1 - 70)-1/2Zp '(2n 
-- 

120) OpXp (1 
- 

To)-l /2Zp 

where Zp represents the p-dimensional standard Gaussian vector and Opxp is a 

p X p-matrix of zeros. 

(ii) Assuming An -> 0 with n lAnll2 -> oo, 

(A',MAn )2 

n(AnS - T) = argmax W(w) - Iwl (16) 
AnSAn w 2 

where W(.) represents an independent two-sided standard Brownian motion de- 

fined in R. 
(iii) Assuming A constant, 

n(n,-to) = argmax A'W*(w)- - A'M(A)Aiw[ , (17) 
w 2 

where W*(.) represents a process defined in Z, the integer set, such that 

'0, w=0 ' 

W*(W)= < t W -=w-2, (18) 

,, w= 1,2,.... 

(iv) The distribution of -((/31 - Plo)',(/2n -P20)')' and that of n(rn - To) are 

asymptotically independent for the two cases of A. 

Part (i) of Theorem 3 asserts that the estimated regression parameters have a 
standard limiting distribution, as if the true change point were known. For the 
shift estimator, we only obtain a free distribution under the assumption of A 



360 INMACULADA FITENI 

decreasing with n, in part (ii). This is characterized by a two-sided Brownian 
motion, defined as 

) WI(-w), w < 0 

with {Wl(t): t E [0,oo)} and {W2(t): t E [0,oo)} being two independent stan- 
dard Brownian processes. The explicit form of the distribution in (16) is given 
by 

1 + f-- 8 + 2Jt e(-(1/8)t t- e (I F(t) = + 0 _Te See e - I -t+-, (19) 
2 2J/z 2 2/ 2 2 2' 

for t > 0. See, e.g., Bai (1994) or Huskovai (1997) and references therein. It 
can be easily seen that for this local change case, the asymptotic variance of 
the shift estimator depends on the ratio 

(Al,MA )2 (A'M(, )A;)2 

(A SA) (A',sS(F,)A) 

which again depends on the distribution T, defined in A2.3, and the score il, 
function, in A1.2. The larger the ratio is, the smaller the asymptotic variance 
will be. Thus, for this regression case, the smallest variance corresponds to 
f(Ut(O)) = f(Ut(0)) -af(Ut(0))/a0', where Ut(0) = (Yt - O'Xt), 0 E 0, and 

f(.) denotes the density function of Ut(0), inferred from the distribution F(Zt). 
If this density were unknown, we could develop an estimator of the optimal 
score function that could be used as the proper score function. Part (iii) pro- 
vides the limiting distribution of the break point estimator under a fixed mag- 
nitude of shift. If the right-hand side of (17) were a set with more than one 
element, the continuous mapping theorem would not hold. But, as in Bai (1995), 
the problem could be modified as follows. We redefine '7 as the smallest value 
of the set of those elements holding (6). Then, n(t, - ) will converge weakly 
to the distribution corresponding to the minimum value of the set determined 
by the distribution in (17), which is uniquely defined. However, this functional 
central limit theorem is useless, because the limiting distribution is case depen- 
dent. Only for a known data distribution would it be possible to approach the 
obtained asymptotic distribution by Monte Carlo simulation. 

Finally, considering part (i) of Theorem 3, we derive the asymptotic distri- 
bution of the jump size M-estimator in the next corollary. 

COROLLARY 1. Under Al.1, A1.2, and A2.1-A2.8, it holds that 

\n(An - A) 4 (ro0(l - 0))-1/2M- 1S /2Z 
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The results corresponding to the scale invariant version of the parameter es- 
timators, described in Remark 3, are summarized in Corollary 2, which fol- 
lows. We also make the following assumptions. 

A3. 

(i) supt E[sup,,o j(o- 1U)l) I x] = 0, where Fx = o-(X_ ...,X,). 
(ii) supt 1 X12 < 0o. 

(iii) lim n 1 -1 n -n llXXt+nJ < nO. 
n-> oo 

COROLLARY 2. Under Assumptions Al.1, A1.2, A2.1-A2.8, and A3 the 
results of Theorem 3 apply to the scale invariant estimator considered in Re- 
mark 3. 

Note that Assumption A3 (i) is quite restrictive. For instance, if we consider 
both regressors and error i.i.d. and mutually independent, this condition will 
remain true if and only if we assume symmetry of the error distribution, taking 
into account Assumptions Al. It would be possible to develop asymptotic re- 
sults along the lines of Huber (1982), which hold whether or not the errors are 
symmetric, but this would yield a rather unwieldy asymptotic distribution and 
is beyond the scope of this paper. Sufficient conditions for A3 (iii) to hold can 
be found in Davidson (1994, p. 482).5 

The limiting distribution in Theorem 3 has been obtained under general con- 
ditions of weak dependence for the data. However, two specific cases are worth 
mentioning. The first case concerns i.i.d. observations, and it could be consid- 
ered a particular case of the previous one. The second one allows for trending 
regressors and weakly dependent perturbations. Both cases are outlined sub- 
sequently, by Assumptions A4 and A5, respectively. 

A4. Let {(X/, Ut)'}t<, be a sequence of i.i.d. random vectors, mutually inde- 
pendent, and D E [Xt X] a nonsingular matrix. 

A5. Let {X = g(t/n)}t<,, where g is a bounded and continuously differen- 
tiable vector valued function on [0,1). The sequence {?(Ut)}t_ n satisfies the 
same requirements of {77t}tn in A2.4 and it holds that 

A5.1. Uniformly in (,r) E O X I1, lim,,non-~ 1']E[i(Ut + O'Xt)g(tn) X 
g(t/n)'] = M(,r), a positive definite matrix V(O,r) GE X II. Let m(C) = 
limn-1o n- : t=1 E[(Ut)]. 

A5.2. Uniformly in r E (0,1), we assume that lim,_,,var[n-1/2t (Ut)] = 
rs(C/), where s(?/) = lim,oo var[n-'/2 t 1 1i(Ut)], finite and positive. 

Proposition 3, which follows, provides a functional central limit theorem for 
the shift point estimator under these two new sets of conditions. Equivalent 
results can also be obtained for the estimated regression parameters, but they 
will not presented here to save space. Interested readers are referred to Fiteni 

(1998). 
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PROPOSITION 3. Under Al.], A1.2, A2.1, A2.2, A2.6, and An -- 0 with 

nllAnll2 -> 00, we have that 

3.1. Assuming A4, (A'DA,)n(r, 
- To) => c,argmax,{W(v) - lvll}, with c,, = 

E[J2(Ut)]E[(Ut)] -2 
3.2. Assuming A5, (A' g(ro)g(To)'An)n(Q - To) = c, argmaxv{W(v) - 1vl }, with 

c, = s(qp)m(q)-2. 

The results in this section allow us to make inferences about the model 

parameters. But we need to obtain consistent estimates of two matrices, 
M, defined in A2.7, and S, defined in A2.8. Regarding the first one, we pro- 
pose to use (Ml + M2), such that Mi = n-1 n] (f(Yt - 3nXt)XtX and 

M2 = n 1 n]+l i(Yt - nXt)XtX. When serial correlation is present, the 
second one can be consistently estimated by (S1 + S2), using a kernel-based 
method for the partial covariance estimators Sj, for j = 1 (with the data from 
1 to [nr]) and j = 2 (with the data from [ne] to n). This method was pro- 
posed and discussed by Andrews (1991, 1993) in a similar context. The con- 
sistency proof of the preceding matrix estimators is detailed by Fiteni (1999). 

4. MONTE CARLO EXPERIMENTS 

In this section, simulations are performed to verify some theoretical properties 
of the change point estimator for a finite sample situation. Under different dis- 
tributional scenarios for the error term, we compare the performance of LS, 
LAD, and Huber estimators. The first is the most efficient estimator under nor- 
mality; the second is the most robust; and the third one is an intermediate so- 
lution between them, providing a compromise between efficiency and robustness. 
We compare the estimators in terms of bias and mean square error (MSE). We 
also estimate their tail probabilities, obtaining the proportion of times that the 
estimate is found outside the asymptotic confidence intervals at different con- 
fidence levels. 

Data are generated according to the following model: 

Yt, =1 + Xt + AnI(t/n > To) + ut, t = 1,..., n, 

where r0 = 0.5, xt - i.i.d.N(O,1) and ut - i.i.d.F(u), with F generated as a 
standard normal, double exponential, t3, t5, and two contaminated standard nor- 
mal distributions. The latter will mimic the effects of 10% and 25% outliers by 
taking the respective percentages on observations from N(0,32) and the others 
from N(0,1). These will be denoted by N90, and N75 respectively. The error 
term is standardized to get a variance equal to one for all cases. For the estima- 
tion of the tail probability, we consider the asymptotic distribution obtained in 
Theorem 3 (ii). We suppose that the size of the shift is decreasing with the sam- 
ple size, at a rate such that n lAnl2 -X oo, considering those values of An that 

satisfy n-1 llAn 12 = 0(1), for 8 C (0,1). In this simulation study, we have set 
8 = 2 and, then, lAnj = O(n 1/4). Thus, for n = 100, 200, and 500, the con- 
sidered values of An are 2.1892, 2.0, and 1.79527, respectively. We have fixed 
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An = 2 for n = 200, and the values corresponding to the other sample sizes 
have been obtaining according to this. 

For each type of distribution F(u), 5,000 replications are performed and LS, 
LAD, and Huber estimators are obtained to compare them under these different 
scenarios. The computed Huber estimator is scale invariant, considering the 
MAD as the scale estimator (in Remark 3), and the corresponding constant c 

equals 1.345, according to the minimax version (see Huber, 1982). The pro- 
grams are written in FORTRAN90 Double Precision, and the IMSL routines 
were used for the random number generation. We have applied the algorithm 
designs proposed by Koenker and D'Orey (1987) for the LAD estimation and 
those proposed by Huber and Dutter (1974), Dutter (1975), and Huber (1977) 
for the Huber estimator. Tables 1 and 2 show the results. 

As regards the point estimation performance, the results are as expected in 
terms of MSE. In the standard normal case, LS is the best estimator for all n. 

TABLE 1. Bias and mean squared error for LS, LAD, and Huber estimators of 
the structural break pointa 

Point Estimation n = 100 n = 200 n = 500 

Model Estimator Bias MSE Bias MSE Bias MSE 

LS 0.292 2.252 0.418 0.426 0.656 0.312 

N(0,1) LAD 0.390 3.819 0.379 0.738 0.544 0.593 
Huber 0.180 2.395 0.418 0.453 0.583 0.356 

LS -0.364 2.166 -0.062 0.900 -0.037 0.318 

2exp(lu|) LAD -0.018 0.987 -0.005 0.351 -0.173 0.138 
Huber -0.026 2.166 -0.058 0.534 -0.273 0.198 

LS -1.544 2.972 -0.144 1.527 0.042 0.443 

t3 LAD -0.306 0.590 -0.084 0.263 0.229 0.089 
Huber -0.474 0.653 0.084 0.307 0.192 0.104 

LS -1.000 2.119 -0.189 0.954 0.214 0.311 

t5 LAD -0.246 1.610 -0.065 0.669 0.359 0.254 
Huber -0.136 1.283 0.114 0.527 0.296 0.237 

LS -0.156 1.943 -0.525 0.958 -0.028 0.326 
N90 LAD -0.070 1.339 -0.085 0.621 -0.014 0.217 

Huber -0.184 1.099 0.027 0.535 -0.025 0.160 

LS 0.820 2.039 -0.267 0.949 -0.005 0.032 
N75 LAD -0.384 0.777 -0.144 0.362 -0.067 0.012 

Huber -0.122 1.013 -0.228 0.447 -0.012 0.014 

"Based on 5,000 replications of the model Yt = 1 + Xt + A,I(t/n > To) + ut, with t = 1..., n and n = 100, 200, 
and 500, such that A, = 2.189, 2.0, and 1.795, respectively. Several distributional scenarios for ut are considered: 
standard normal, double exponential, t3, t5, and two mixed standard normal distribution, N90 and N75, with 10% 
and 25% of a normal distribution with variance equal to 9, respectively. The values corresponding to bias and 
MSE must be divided by 103. 



TABLE 2. Interval estimation for LS, LAD, and Huber estimators of the structural break pointa 

Interval Estimation n = 100 n = 200 n = 500 

Model Estimator a = 0.1 a = 0.05 a = 0.01 a = 0.1 a = 0.05 a = 0.01 a = 0.1 a = 0.05 a = 0.01 

LS 0.158 0.091 
N(0,1) LAD 0.120 0.073 

Huber 0.157 0.096 

LS 0.145 0.093 
2exp(jul) LAD 0.068 0.034 

Huber 0.148 0.086 

LS 0.149 0.087 
t3 LAD 0.052 0.021 

Huber 0.140 0.078 

LS 0.144 0.084 
ts LAD 0.079 0.038 

Huber 0.138 0.080 

LS 0.140 0.081 
N90 LAD 0.076 0.039 

Huber 0.144 0.084 

LS 0.147 
LAD 0.061 
Huber 0.151 

0.085 
0.094 
0.084 

0.036 0.130 0.074 
0.026 0.088 0.044 
0.037 0.127 0.073 

0.031 0.125 
0.007 0.056 
0.026 0.118 

0.032 0.125 
0.004 0.058 
0.02 0.119 

0.027 0.127 
0.012 0.066 
0.023 0.126 

0.029 
0.009 
0.026 

0.032 
0.064 
0.028 

0.136 
0.078 
0.135 

0.133 
0.064 
0.133 

0.070 
0.028 
0.067 

0.075 
0.022 
0.067 

0.071 
0.034 
0.067 

0.080 
0.034 
0.078 

0.077 
0.030 
0.075 

0.018 
0.009 
0.018 

0.022 
0.004 
0.018 

0.025 
0.003 
0.016 

0.018 
0.008 
0.017 

0.021 
0.006 
0.023 

0.021 
0.005 
0.021 

0.121 
0.088 
0.122 

0.114 
0.067 
0.114 

0.111 
0.057 
0.115 

0.116 
0.071 
0.116 

0.114 
0.070 
0.113 

0.111 
0.061 
0.113 

0.065 
0.046 
0.067 

0.062 
0.030 
0.061 

0.064 
0.024 
0.062 

0.063 
0.032 
0.064 

0.066 
0.034 
0.061 

0.065 
0.028 
0.062 

0.016 
0.009 
0.016 

0.018 
0.006 
0.016 

0.016 
0.004 
0.014 

0.016 
0.006 
0.018 

0.015 
0.005 
0.016 

0.018 
0.003 
0.015 

aBased on 5,000 replications of the model Yt = 1 + X, + A,I(t/n > T0) + u,, with t = 1,...,n and n = 100, 200, and 500, such that A, = 2.189, 2.0, and 1.795, respectively. Several 
distributional scenarios for u, are considered: standard normal, double exponential, t3, t , and two mixed standard normal distribution, N90 and N75, with 10% and 25% of a normal 
distribution with variance equal to 9, respectively. 

CDO 

N75 
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Similarly, the LAD estimator presents the least MSE under the double expo- 
nential distribution. With the mixed and t-distributions, the LS estimator per- 
forms comparatively rather badly, whereas the other ones have a very close 
behavior. The Huber estimator performs better than the LAD estimator with 
the distributions t5 and N90 and all the sample sizes. The counterpart is ob- 
tained with the more contaminated distributions, t3 and N75, although the dif- 
ference is not very meaningful. 

We also report the proportion of times that the estimators fall outside the 
asymptotic confidence intervals constructed from the asymptotic distribution 
(16), where the standard errors are estimated as indicated in the last paragraph 
of Section 3. The asymptotic critical values ca, are equal to 7.69, 11.035, and 
19.78 for a = 0.1, 0.05, and 0.01, respectively. Inspecting Table 2, we can ob- 
serve that the LAD estimator underestimates the tail probabilities in all the dis- 
tributional scenarios, and this feature remains so for the largest sample size.6 
Otherwise, LS and Huber estimators approximate the probabilities rather well, 
obtaining a good result for n = 500. 

Finally, it is worth mentioning that, in this simulation study, we have as- 
sumed a decreasing shift and we have compared the estimated probabilities with 
respect to the asymptotic distribution of the break estimator only for this case, 
which, as we know, is distribution free. For illustrative purposes, it could be of 
interest to compare them with the asymptotic distribution under the assumption 
of a constant shift, as we can see in Bai (1994) for the LAD estimator. In fact, 
Bai concludes that the approximation for this case is better than for the first 
one. However, doing so implies assuming that the data generating process is 
perfectly known, which is not suitable in practice. We have also considered 
other designs, which are not reported here, allowing a change in the slope of 
the model, the break date to be n/4 and 3n/4, and a certain degree of depen- 
dency for the error term. The results do not change in a significant way. For the 
last case, larger samples are needed. 

NOTES 

1. Although the analysis of this paper is carried out in terms of a pure structural change model, 
such that each component of A is nonzero, the argument can be extended to a partial structural 

change model without essential difficulty. The difference between them is a matter of efficiency, 
given that the second model incorporates (with respect to the first one) additional null restrictions 
about some components of A. 

2. Otherwise, the partial coefficient estimators will be defined as the minimum values of the 

corresponding subsets {/3n(r)} and {]32n(T)}, respectively. 
3. {Yt} is an L2-NED process on {Ut} with Vm = Jil+l p + P2 and dt = 2SUps| Ut 2 

Clearly, vm is of size -qo if \p + lpJl = O(j-l-q) for q > qo. Then, {Yt-j} will be an L2-NED 
with v' = voI(m <j) + v,,-jI(m > j) of size -qo and constants d' = 2dt-j. Finally, observe that 

/t - E [r,t t,+m] 2 C sup ||(Ut) 1( 2 Yt-1 -E [Yt_-|tt+mM] 12, 
t 

where Ft_mt+m = o (Ut_m, ...,Ut+m). 
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4. In fact, this result will be obtained whenever the matrix M(O) has a constant value for all 
0 E 0. 

5. I am very grateful to D.W.K. Andrews for bringing this point to my attention with very use- 
ful comments. 

6. Although not reported here, the LAD estimator was also obtained considering greater sam- 

ples, e.g., n = 1,000, and the approximation of the tail probabilities was really good. The previ- 
ously mentioned problems, with smaller samples, can be due to the nonparametric estimation of 
the density function that involves the covariance estimation of the LAD estimator. 
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APPENDIX 

We shall consider the case of r c ro0, without loss of generality because of symmetry. 
Limits are taken as n, the sample size, increases to infinity. For notational convenience, 
we establish that [nr] = k and [nro] = ko, and J=ij will be denoted by Ei. The sub- 
script n of the estimators will be omitted. 

Proof of Proposition 2. 

Proof of (2.1). Applying the mean value theorem (MVT) to (7), 

0' = (i(7) - 
10o)'7M(0,), (A.1) 

0, = (/32(-) -/)'(70 - )M(01) + (:2(T) -2o)'(1 - 70)M(62), (A.2) 

for any r E II and large n, by Assumptions Al.1, A1.2, A2.1-A2.5, and A2.7 and 
Lemma 1 (Lemmas 1-6 appear at the end of this Appendix), where 01 = 61(/31(r) - 13Io) 
and 6i = i( I2(r) - PiO), for i = 1,2, such that 0 < ,1, i < 1. By A2.7, M(0) has full 
rank for all 0 ? 0, and then (A.1) and (A.2) will be satisfied if and only if 

P1(T) = 810, 

/2(T) = MA/2((T7 - T)M(01)'7l10 + (1 - To)M(02)'/320), (A.3) 
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given that M2 is nonsingular. By adding and subtracting (70- -r)M2 'M(01)'/320 on 
the right side of (A.3), we establish the result. The case of 7 T -0 is obtained by symmetry. 

Proof of (2.2). Applying the MVT to the objective function (2), 

lim E[S,,1 lim E i E[p(U,)] + (P2(r) 310)'(To 0 )M(01)(/82jT) /31) 
nl--oo n-0oo n tn 1 

+ (/82(T) /820)'(1 - 70)M(02)(82(7) /18O), 

by Assumptions ALl, A1.2, A2.1-A2.5, and A2.7 and Lemma 1, with Oj, j = 1,2, 
defined as previously. By A2.7, it holds that Vr 0 To0, the second and third terms of 
the preceding equation are no less than zero, and at least one of them will be strictly 
positive. Both terms will be equal to zero only for m0. Thus, we identify md as 
arg min,,0 lim,/2,,E [Sn(r)], with the objective function concentrated in T. By (2.1), 
the identification of T0 implies the identification of the regression parameter vector eo, 
defined by (1). U 

Proof of Theorem 2. This theorem follows from Propositions 4 18, stated at the 
end of this proof. We deal simultaneously with both fixed and shrinking shifts, which 
will be distinguished only when needed. We want to prove that 

Pr sup (S,(iO) 
- 

S(n))> 0 <31. (A.4) 

From the definition of Sn(e), it holds that 

1 ko 1 n - 
- I P(yt - P;,oxt) + Y'Py -820t n t., nY1t=ko+l 

1 ko 

pk(Yl - l Xt) - 

I ko 

+ - 7, p (Yt - 8, xt 
n1 t=k+ I 

I n 

- C p(Yt /82Xt) n 
t=ko+l 

1 
ko 

- p (Yt - 82,). 
n1 t.k+1 

(A.5) 

(A.6) 

(A.7) 

By A1.1 and the MVT, (A.5) + (A.6) is equal to 

I ko 

.(181 - 181), - 1: -qt 
n1 t.. 

1 1 ko 

-(3 13)' - I 11 18))(160 - /1) 2 nI t., 

In 1 I 
n 

(1320 - 2) - - (1320 - 12) - 1 *(2(20 182))(1820 132), 
n t=k0 l 2 n t=k0 1 

Sn(G) - Sn(e) 
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such that 0 < 61,52 < 1 and 7,t(O) = r,t(O)/0a'. Next, by adding and subtracting 
n1 - 

kol p(Ut), we obtain that (A.7) is equal to 

1 ko 1 1 ko 
(I10 

- pl)' - 2E 't + - (/10 - 1)' 1- t 3(3 (10 -/31)) (110 - 1) n t=k+ 1 2 n t=k+1 

1 ko 1 1 ko 
- 

( P10 
- 

2)' - t - (P10 - 2)' - E t(54(310 -2))(P10 -2), n t=k+l 2 n t=k+l 

(A.8) 

by the MVT, where 0 < 83,84 < 1. Next, define Mn(j,l,6) = n- Ejl+j t(0) and 
Nn(j,l) -= n-1 j+i^. Gathering (A.5)-(A.7) and arranging terms, we have that 
S,n(o) - Sn(c) is equal to 

1 
-2 (10o- 1)'M,(O,k, 1(Po - 

P1))(,o10 -/,1)- (1o- -,1)'Nn(O,k) (A.9) 2 

1 
- (P20 

- 
P2)'Mn(ko,n,2( 6P2o - 32))(P20 

- 
P2) - (P20 - P)'Nn(ko, n) (A.10) 

-2 A' + 2 (P20 -2)' M (k, ko,8 4(P10 -2)) ( A + 2 (20 -2)) (A.11) 2 2 2 2 

-(A' + (20 o- P2)')Nn(k, ko) (A.12) 

taking into account that (/io - P2) = A + (/20 - P2). Finally, observe that the param- 
eter space 

A U B U D = [(A U B) nD] U [(A U B) D] U [(A U B) nD] 

= G1 U G2 U G3, (A.13) 

a union of disjoint sets, where E denotes the complementary set of E. Then, the left side 
of (A.4) is upper bounded by 

Pr{sup(Sn(o)- Sn()) > 0} + Pr{sup(S(eo,) 
- S()) > O 

GI G2 

+ Pr sup(Sn(0o)- Sn(:))> 0o, 
G3 

with (Sn(o) - Sn()) defined by (A.9)-(A.12). Thus, it suffices to show that each of 
the terms composing the preceding expression is bounded by e for both C and n large 
enough. This is obtained subsequently. 
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First Case (G1 = [(A U B) n D]). To bound the probability (A.4) restricted to this 
parametric set, we need to consider the following possible cases of P2: 

(b.1) F1 {(/320 
- 

32) 
- 
-A, 120 - 

21 > C/\7-}. 
: (b.2) F2 = {(1 20- 2) -A, 1120 -2 11 < C/XF}. 

(b.3) F3 {(320 
- 2) < -A,1,20 - /2 > C/Xf}. 

(P120 
- 

82) -< -A 
(b.4) F4 = {(20o - 2) -A, 11820-2 13 < C/n-}. 

Observe that (A U B) implies /3i1 - loll > C/W-n and/or 11/2 - P20o > C/-n. 

First, consider |13i - /1oll < C/XF; then we have B n D, because of G1. In this para- 
metric subset, the probability (A.4) will be upper bounded by 

Pr sup[(A.9)+ (A.10)] > 0}+ Pr sup [(A.1)+ (A.12)] > 0, 
Afi B BD 

where the first term is asymptotically negligible by Proposition 10. Because B 
F1 U F3, a union of disjoint sets, an upper bound for the second term is given by 

Pr sup [(A.11) + (A.12)] > 0 +Pr{ sup [(A.1) + (A.12)] > 0, (A.14) 
F1 nD F3 JD 

which tends to zero for large enough C, by Propositions 11 and 12. Next, we assume 
that 1/31 - /1lol > C/\fn, so that it may happen that B n D or B n D. First, consider 
A n B n D, a subset of G1 for which the probability (A.4) will be less than or equal to 

Pr{s(A.) +Prsup(A.9) + Pr sup(A.0)> 0 + Pr sup [(A.ll ) + (A.12)] > 0. 
A B BnD 

First and second terms converge to zero for large enough C by Propositions 7 and 8, 
respectively, similar to the third one, bounded by (A.14) as in the previous case. Finally, 
it remains to consider the parametric subset A n B n D. Observe that B = F2 U F4, 
where F2 n F4 = 0, and then (A.4) will be bounded by 

Pr sup[(A.9) + (A.10)] > 0} + Pr sup [(A.11) + (A.12)] > 0 
AnfB F2AD 

+ Pr< sup [(A.11) + (A.12)] > 0 
[F4D 

which converges to zero by Propositions 9, 13, and 14. 

Second Case (G2 = [(A U B) n D]). Proceeding as before, if A holds, then we have 
B n D because of G2. In this case we obtain that the probability (A.4) converges to zero 
by Proposition 16. Next, if A occurs then we have B n D or B n D. In the first case, 
(A.4) is bounded by 

Pr{sup(A.9) > 0 + Prsup [(A.10) + (A.1) + (A.12)] > 0, 
A BnD 

and the involved terms converge to zero by Propositions 7 and 15. In the second case, 
i.e., A n B n D, (A.4) will be asymptotically negligible by Proposition 17. 
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Third Case (G3 [A fl B nl Dl). In this parametric subset, the probability (A.4) 
converges to zero by Proposition 18. 

Theorem 2 follows from Propositions 4 18, which appear subsequently. They are 
obtained under Assumptions All, A1.2, and A2.1-A2.8. To simplify the exposition, 
and taking into account (A.9)-(A.12), we denote 

Mln = Mn (0, k, 01), Njn, N, (0, k), 

M2, = Mn (ko, n, 02), N2n Nn(k,, n), (A.15) 

M4n = Mn (k, ko, 04), N4n Nn (k, ko). 

where 

(? = 1(I310 - PI) = 3(1310 -/3k), 02 = 52(20 - 1), 

and 04 4(1310 132). (A.16) 

PROPOSITION 4. Uniformly in T E (0, 1), it holds that 

Ml,, =M(01) + op(1), M2 = (1 r0O)M(02) + oP(l), and 

M4n = (O - 'r)M(04) + OP(1), 

where Mi,n and 0,, for i - 1, 2, and 4, are given by (A.15) and (A.]6) and M(.) is de- 
fined by A2. 7. 

Proof. Under A2.1, 

1 [nTl 

sup 11 Mln - TM(01) SUP SUP - C 
' 

*(o) - TrM(0) -_ 0, 
TEn 7rFH 8E E- t=n 

by Lemma 1. The remaining results are established similarly. U 

PROPOSITION 5. Va E 1kR and T E (0, 1), it holds that 

,\I-na'Nln (a'Sa)1'B2(7), -4T-na'N2n > (a'Sa)'/2B(1I T0), and 

V\Ia'N4, i (a'Sa)1/2B 7o - T), 

where N,, is defined in (A 15) for i - 1, 2, and 4 and B(.) is a p-vector of independent 
Brownian motion processes in [0, 1]. 

Proof. Lemma 4 and the continuous mapping theorem yield the result. U 

PROPOSITION 6. Let M(0) be a matrix defined VO E 0 by A2. 7, with eigenvalues 
a3j(), j = 1,...,p. Then Vy E RP", it holds that y'M(0)y > q(0)jjyjj2 > 0, where 
q(0) = minj{aj(0)}. 

Proof. By A2.7, M(0) is a p X p finite and positive definite matrix for each 0 E (. 

Hence, the Courant theorem yields 

y'M(0)y> inff y'M(0)Y y y 
= 

min{aj(0)}jyr 112 > 0. U 
y[ y'y J 
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PROPOSITION 7. Given the event {E} = {sup(A.9) > 0}, it holds that, for large 

n, Pr{E1i} < e for C large enough. 

Proof. Observe that, for large n, {El} implies the event 

(1o - 181)'\nN x/?N,, 
isup 

( o 1)f >inf , I2(i( /3 (A.17) A 18i/3o - /S1~ A /1,8o - 9s11 

from Proposition 4 and A2.7, where rl = inf{r: E II} > 0. Proposition 6 yields 

sup (T 131)n n > r7 q1 inf lfi10 -/l| I 
A 1/3io -iPlo l A 

where ql is the smallest eigenvalue of M(l1). Hence, we obtain that Pr{E1} will be 
upper bounded by 

Pr sup >r 1qC =0 1 )' 
A H8PIo - Pill C2 

for large n, by Lemma 5. From here the conclusion is standard because C can be arbi- 
trarily large. U 

PROPOSITION 8. Given the event {E2} = {sup(A.10) > 0}, it holds that, for large 
IB 

n, Pr{E2} < e for C large enough. 

Proof. By Propositions 4 and 5 and Lemma 6, the result follows as in Proposi- 
tion 7. 1 

PROPOSITION 9. Given the event {E3} {sup[(A.9) + (A.10)] > 0}, it holds 
AnfiB 

that, for large n, Pr{E3} < e for C large enough. 

Proof. Because in the subset B, (/20 - /2) = Op(n-1/2), we have M2n = Op(l) and 
XnN2n = Op(l) by Propositions 4 and 5, respectively. Then, we prove the result as in 

Proposition 7. I 

PROPOSITION 10. Given the event {E4} = {sup[(A.9) + (A10)] > 0, it holds 
AnB 

that, for large n, Pr{E4} < for large enough C. 

Proof. Using Propositions 4 and 5, the result follows as in Proposition 9. U 

PROPOSITION 11. Given the event {E} = { sup [(A.1l) + (A.12)] > 0, it holds 
F, nD 

that, for large n, Pr{E6} < for C large enough. 

Proof. Let q4n be the least eigenvalue of nM4n/(ko - k), a finite and positive definite 
matrix by A2.6. Then, {E6} will imply that 

{u A' + (,320 -/2)' nN4 q4n {A + (/f20 -2)12 A.8 
F,nD IA + (/20 -/2)l (ko - k) F,nD 2 |All + 11320 -/3 J (1 
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In F1, (,320 - 2) > -A, and given A > 0, it holds that 

IA + (/0- 32)112 > 11320 - 212 - IIA112 = (11320 - 121 + 1|A|)(1320 - /21- IA). 

(A.19) 

Hence, by Lemma 3, there exists K < oo such that 

Pr{E6} ' K( 4lA2 -IIA)) 1 ? ( 

for large n, an o(l) term for arbitrarily large C. 

PROPOSITION 12. Given the event {E7} = { sup [( ) (A. 12)] > 0, it holds 
F36D 

that, for large n, Pr{E7} < for C large enough. 

Proof. In F3, (320 - 32) < -A and noting that (/20 
- 

P2) < 0, we have 

IiA + (320 - 12)12 > II Ai2 -11320 - 2112 =I (IIA + 11P20 - 3211)(1I A - 11 20- 32 11) 

(A.20) 

Using similar arguments as in proving Proposition 11, we obtain that, by Lemma 3, 

there exists a constant K < oo such that 

r ( 4 112 ( 
C1/2 

) 
= 

1 \ 

for large n. The result follows from standard arguments. 

PROPOSITION 13. Given the event {E} = sup [(A. l) + (A.12)] > 0, it holds 
F26D 

that, for large n, Pr{E8} < e for C large enough. 

Proof. As in Proposition 11, given F2, the event {E8} will imply 

tsup (A' + (P20-J 2)')nN4 
> q4n lA + (P/20 

- 
2)2 

2 

F2D. I A |l(k - k) F2nD 2||A1 

by A2.6 and using (A.19). In the subset D, from Lemma 3, it follows that, for a constant 

K < oo, Pr{E8} will be upper bounded by 

K Cq411 Op (n1) (1 Cq) 
K 4lJg2 (Ot(n) 

- Al2 a ) K( 
- 

(Op(n-' IA -2) -1)2 ) 

for large n. Standard arguments imply the result. 
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PROPOSITION 14. Given the event {E9}= I sup [(A.11)+ (A. 12)] > 0, it holds 
F4D 

that, for large n, Pr{E9} < s for C large enough. 

Proof. The proof follows by A2.6, Lemma 3, and (A.20) using similar arguments to 
those of Proposition 13. U 

PROPOSITION 15. Given the event {E} = sup [(A.10) + (A.I1) + (A.12)] > 0, 
BnD 

it holds that, for large n, Pr{Elo} < for large enough C. 

Proof. Observe that {El0} implies the event 

s 
(120 -2) Wu2n A' + (/20 -2) upN4 

BnpD 11 /20 
- 21 11/320 -321 

+ Xn (20 -2)'M2n( p20 -12) 
2 11/20 

- 
8211 

2\(- A' + 2 (820-82) M4n -( A + 2 (o820 -2)) l 

+ 
][+ 11I,20 -3211 

> 0 . (A.21) 

In the subset D, it holds that Ir - ro < C/(n I| A 112), and therefore, Va E RIP, a'M4na = 

Op(n-' IIA l-2 a 112), and xlna'N4, = Op(n- 1/2 1A 1 A| 11a), by Propositions 4 and 5 and 
Markov's inequality. Thus, by A2.6, A2.7, and Proposition 6, (A.21) will imply the event 

3B 1P20 - /3211 /C n A( 

and then, for large n, we obtain that Pr{E1o} will be less than or equal to 

Pr sp (\P20 -P2\\ \ I = 0 ) r {sup12 2 N2n > C (2 - o1)q2 + P 
C2 C2)' 

from Lemma 5. Standard arguments conclude the proof. 1 

PROPOSITION 16. Given the event {E1} = { sup [(A.9) + (A.10) + (A.l1) 
AnBND 

+ (A.12)] > 0}, it holds that, for large n, Pr{E}I < s for large enough C. 

Proof. Given A, (,0io 
- 1) = Op(n/2Op) and then M = Op() and = 

Op(l) by Propositions 4 and 5, respectively. Hence, the preceding event will imply that 
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- (3o2-/320 )nN A' + (+o( - 
/2)' 

sup 11 0 1211 N2, + 1 N4n 

?+ F( o20- 12)'M2n(1o20 -t2) 

211 2o0 - P211 

2 12 A' + - 
(320 

- 2)' M4n 2 -2 (20 
- 

2)) 
247 2 2 2 2 

ll120 - 3211 

Op(n- 1/2) 
t3 o20 - 12 _ 

Because Op(n-1/2)/11320 - f211 = Op(l/C) in the subset B, the result follows as in 

Proposition 15. I 

PROPOSITION 17. Given the event {E12} { sup [(A.9) + (A.10) + (A.ll) 
AnBnD 

+ (A.12)] > 0 , it holds that, for large n, Pr{E12} < for large enough C. 

Proof. By Propositions 4 and 5, the result follows as in Proposition 16. U 

PROPOSITION 18. Given the event {E13} = { sup [(A.9) + (A.10) + (A.ll) 
AnBnD 

+ (A.12)] > 0 , it holds that, for large n, Pr{E12} < s for large enough C. 

Proof. Proposition 5 yields supAnBnD(lAli(ko - 
k))-'(1jo - j)'nNjn = Op(C-1), 

for j = 1,2 and {E13} this will imply that 

f2 (- A' + 20 -2 nM4n ( A + 2 (6f20- ]2)) Iuj ((A' + (P120 - 2) )nN4n 2 2 2 
sup + 
AnD_ II (k- k) lAII(ko- k) 

n sup {(/jo 
- 

Pi)'(Mn + M2n)(jo - /3j)} 1 

2 1A(ko - k) Op( 

From Proposition 4, (Ml1, + M2n) converges in probability, uniformly in r, to rM(01) + 

(1 - To)M(02) > infoEoM(0) + (7 - To)inf0oEM(0). Then, for large n, the preceding 
event implies that 

f (A'+(P20 -2)')nN4, / 1 

1| A || (ko - k) TC 

> inf q4nlA + (o20 -32)112 (qinf + op(l))p(n-l) 

AnB3D 211|A(kO - k) 2| AI ( 
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by A2.7, where qinf > 0 is the smallest eigenvalue of infoeoM(O). Given that B = 
F2 U F4, the result follows much as in Propositions 13 and 14 for large n and C. A 

Proof of Theorem 3. Again, we only consider the case of v3 < 0, without loss of 
generality because of symmetry. For notational convenience, [U3PA] will be denoted by 
v3PA. By (A.9)-(A.12), we obtain that 

nA(v) = - - r7k (A.22) 

1 I 
7 

, \ 1 

2 n t=1 \-t=l 

+ 2 In t- kO 71t (1 VI + Vi ? v 7krt (A.23) 

1 1 ' s v2 1 ^ 
2 n t=ko+v3 p t+ 1 

2 
2 t=ko +1 t=k+l 

2 
t=ko+3 3P^+1 ( V 

- 
-V2U- Z 0t (4 A/ 

-' U2 2 
nt=ko+3 PI+ I \ \ n) 

- A' '64 A + - 
V2 

\I t=ko+v3 pA+ 1 \ -/ 

ko 1 ko 

- A' E qt - -V2 " 
r 

t, 
t=ko+V3 PA+ 1 -n t=k0+3 PA+ 1 

where (A.22) and (A.23) follow, noting that I' = ko - Zk%+. Next, using Lemma 2 
and Assumption A2.1, we can rewrite 

1 1 
nAn (V) = - I(roM + op(1))v, - 2 v((1- o)M + op(1))v2 (A.24) 

+ -2 v ( M + o(l)) v - A (V3 PA (A) + op(1))A (A.25) 

- n( 
v 

M(A+p) +o())v2- A' (v3PAM()+op(l))v2 (A.26) 2 \ n / \jn 

1 ko 11 ko 
I2 2 . ........ V-1lMS) + - V2 ( fM) 

+ 

()v2 (A.27) n t1 n t=ko+ n t=ko+3 PA+ 1 

ko ' I1 ko 

-' E t7- - v 77t. (A.28) 
t=ko+v3 PA+ 1 t=kko+v3 PA+ I 
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Because n -'P1 O(n A 11 -2), an o(1) term in both cases of A, fixed and decreasing 
with n, 

1 1 1 
(A.24) + (A.25) + (A.26) - vl -0Mv, - v(I -0)Mv2 - I'M(A)APAv3 

2 2 2 

+ op(l). (A.29) 

Next, consider (A.27) and (A.28). Using Lemma 4, we have the following convergence 
results: 

1 ko 

VI - I q, >vIS' UB (T0o), 

1 1 k 

t I~ v~S 12B (l- r0) and v 7l m - (l), 
t k0tl 2J~ ttk0o+V3 PA+? 

for j ] 1,2. For the remaining terms, we analyze separately each case of A, in parts (a) 
and (b), which follow. 

(a) When A - A,, such that n 1 An 2 -_ cc, 

A' n q PA;A',S'/2WJ( v3) = -W,(-PA,,A'fSAv) W,( v), 
t= ko + 3 PA,, + I 

(A.30) 

using Lemma 4, for v3 < 0, with a rescaling (n 1/2 is replaced by PA-' 2 because 
k = ko + V3 PA and the number of elements in VN is not larger than NPA). The 
last equality establishes that PA (A'SAJ) 1 and W,(.) is a Brownian motion 
process on the positive half line. The counterpart of (A.30) in the case of v3 > 0 
has a limit W2(.), another Brownian motion process defined on IR+. The two pro- 
cesses are independent by the proof of Lemma 4, part (ii), because they involve 
nonoverlapping series. Furthermore, the third term of (A.29), 

1 1 1 A'MA 
-A v PnM(AJ)A - A' MA v3 (n 

n ) -' 

2 ~ 2 
n 'S 

2 A' SA 
V3 

by Lemma 2. The same result holds when v3 > 0 by symmetry. Thus, 

1 1 1A'MAlh 
(A.24) ? (A.25) ? (A.26) -= vI 0Mv - 

I 
V 0)Mv2 + I An MA 

2 2 2A' SAn 

+ op(l), (A.31) 

(A.27) ? (A.28) VI S 1/2 B B(,r) - VS1/2B(1 0) W(v3), (A.32) 

where W(.) is a two-sided Brownian motion defined on IR and based on the two 
independent processes W1(.) and W2(.), previously stated. 

(b) When A is constant: Consider the process in (18) and let W#(k) k+ Int, for 
k -< ko (taking W#(ko) = 0) and W#(k) 

, 
k0+1 7t, for k > ko. Thus, W#(k) has 

the same distribution as Wt(k - ko), where W*(.) is defined by (18). For 
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k - ko = v3 and v3 K 0, -A' 
Eko+v3?1 it -d_ AW*(v3). For v3 > 0, the limit 

distribution is similarly defined by (18). Therefore, 

1 1 1 
(A.24) + (A.25) + (A.26) -v{ 70Mv1 -I V2(1 - mr)MV2 -A'M(A) Av 

2 2 2 

+ op(l), (A.33) 

(A.27) + (A.28) = V v S1/2B(7-0)- VI cS2B1 m( - T) - A'W*( v3). 

(A.34) 

And the separate treatment for the cases (a) and (b) is concluded. 
Considering the preceding limit distribution of the objective function, a weak conver- 

gence result for the estimators, defined in the compact set {I vi I < M, i = 1,2,3}, can be 
derived using the mapping continuous theorem as follows. 

Proof of (i). u1 and v2 are obtained from the first-order conditions, 

r0Mb1+S'2B(-r) = Op and (1 - 0)Mv2 +S2B(1 0) Or. 

Proof of (ii). Assuming a shrinking shift, 

fI A'MA d ? A'MA I 
m > argmi W(V)+ arg max{W(v) 2 

n 2 A' SAh 2 'A SA,SA 
v 

by (A.31) and (A.32). Using the change of variable w (A' MA /A'SA)2v, 

P-A(k - ko) (, 
n 

ijSAf)arg max{w(w) - - }. I h, \n 

w 2 in n w 

Proof of (iii). For a constant A, we consider (A.33) and (A.34), and hence, 

b3 =* arg min - A'W*(v) + d- A M (A)A - aA'M(A)Alvl}. 

Proof of (iv). This is immediate from (A.31)-(A.34). 

Proof of Corollary 1. Define the vector H [Ip Ip] R IR>2p . Then, 
VYZn(A - A) = N/YnH((~1 - 1o)'.(P2 fPo)')'. which converges in distribution to 

T 
- 1/2 m 

- I 
s 1/2 z 0))1/M--S1/Zp H 

OP Xp (1 
_ 

To )-1/22M-IS/ZpTo)12-S1/2Z 

d 

by Theorem 3. U 

Proof of Corollary 2. Given &', --" a, with a defined by AO, it suffices to show that 

sup sup - 
1C 7it 0, 'n - E (0, afl) --P 0 (A.35) 

T n t., 
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and 

I [nT] 1 [n-r 

sup 7 m( t,S0), \n 1 t(OP,cr) ->P O, (A.36) 
T \I- t= I \-n t I= 

where iit(a,b) = 1(b 1(Ut + a'Xt))XtXt' and 7j,(a,b) = q/(b-1(Ut + a'Xt))Xt, with 
a E iRP and b E l. First consider (A.35). The left-hand side is upper bounded by 

1 tn'1 
sup sup - E (it(6, s) -EL (O, s)]) 

0 n t=1 
6,0O--8'ff+8E 

for all e > 0, which converges to zero by Lemma A3 of Andrews (1993), because 
supI nE[sup0O,,,(jlt(O,s)jj2] is finite by Al and A3. Next, let Xtj be thejth coordinate 

s>O 
of the regressors vector Xt E IRP, for t 1 ..., n, and define, for 0 - h < 1, A01(h, r) 
n-1/2 [T]j,(( , 05o- ? ho-) Ut)Xt, which, for each 

T 
E RL, belongs to C, the space of 

continuous functions defined in [0,11. Because n, -*" Po, to establish (A.36), it will be 
enough to show that An, (h, T) is tight in h uniformly in r, for 1 -<j -<p. From Theorem 
12.3 of Billingsley (1968), we must obtain that (i) An,j(0,T) is tight uniformly in T, 

(ii) there exist y > 0, 8 > 0, and a continuous and bounded function in IR such that, for 
any 0 < h1 I h2 < 1. it holds that as n - 00o, 

P( Anj2(h2,r) - Anj(h 1, r) > K) 
R(h2) R(hj)K (A.37) 

uniformly in r, for all positive K. Part (i) is straightforwardly obtained using Lemma 4. 
By the Chebyshev inequality, to establish part (ii), it would be enough to obtain that, for 
y = 2 and a constant K < oc, supTElAn,j(h2, 7) - An, j(h 1, 7T)12 K I h2 h, 1 . Accord- 
ing to A3 (i), we have asymptotically that 

sup EJAn,j(h2, 7) An,j(h1,7) 2 

I m7 nTI 
nj(t a ut 2,a 2 

sup - E ( j (Xt 
n t=j 0,5o-, 5 + h20- 0, -+ lo 

SUp I (U) 12h 
- h2 

12 1 tnT] 
(~~~~~~4- sup 

- 
IE E ti 1. 5 o-m)], ( CrMn\ 

(0,5 'r2 T n 1., 

from MVT and Al. For K = (6m sup,, (u)I supt 11 Xtj 112)2 a finite constant by A3(ii), the 
result follows. U 

Proof of Proposition 3. For all t, define , = tfr(Ut), kt = 0 (Ut) and let m m qf) 
and s s (q/). 

Proof of (3.1). Under A4, M E[QotD and S = E[q7,2]D. Then, (A'SAn) x 
(n,MAn)2 nEQ/2E[~J7] (A'DA0). The result follows immediately from Theo- 
rem 3 (for which the weak convergence result in Lemma 4 can be obtained by the in- 
variance principle for independent random variables [see, e.g., Billingsley, 1968]). 
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Proof of (3.2). Under A5, trending regressors Xt = g(t/n) satisfy all the conditions 
required in Theorem 2. Hence, we concentrate on the limiting process of 

ko ko 1 

-Afn A' A1 E 4A+ A+ (l). (A.38) 
t=k,+3 PA,+ 1 t=ko+v3 PA,,+ 1 

First, we can rewrite 

ko ko ko 

At E t,g(t/n) = A' tg(kn) + A', (g(tn) 
t=ko+v3 PA,+ 1 t=ko+u3 PA^+ t ko+v3 PA+ 

- g(kon)). 

By Lemma 4, the first term converges weakly to (A',g(Tr)sg(Tr)'An,)/2WI(-v3PA) = 
Wl(-v3), for v3 < 0, where PA = (A'g(ro)sg(7r0)'A)-l and W1(.) is a Brownian mo- 
tion process defined in I'R (for v3 > 0, an equivalent result is obtained by symmetry). 
The second term is uniformly negligible because its variance will be an op(l), given 
A5.2 and PA, = O(\An, l-2). Next, consider the second term of (A.38): 

1 ko 
- A', E (Ut + g(t/n)'O,)g(t/n)g(t/n) 

t=ko+v3 P,+ 1 

1 ko 

= - A', (Ut + g(t/n)'0) (g(t/n) - g(ko/n))(g(t/n) - g(ko/n))'A, 
2 t=ko+v3 P+ l 

(A.39) 

1 ko 
+ - A' E (U, + g(t/n)'O,)g(k0/n)g(ko/n)'A, (A.40) 

2 t=ko+3 PA,,+ 1 

ko 

+ A, E (U, + g(t/n)'O,)(g(t/n)- g(ko/n))g(ko/n)'A,, (A.41) 
n 1 U 0+'3^A+l t=ko+U3 PAn,+ 1 

where On = 4(An + v2/1~n). Applying the MVT, with x* G (tn - ko/n), 

ko dg(x*) 
dg(x*) 

2t ko2 
(A.39) = A', E (/(U, + g(t/n)'O A,, 

nA.39)= 2h1 
C 

X X 
n 

H 2 tko+3 PA+l 
x x n n 

which is upper bounded by 

( dg(x) 2/ ko ko + V3 PA 
2 

SUptA A 
sup 

- 
- - 3PP sup|)t|h AA,, 

x x F f / t 

an op(l) term, because n 1An,12 -> oo and given that functions g(.) and (-) are bounded. 
Similar arguments show that the term (A.41) is also asymptotically negligible. Finally, 
Lemma 2 yields 

(A.40) = op )g()g (A.40) - A'nv3P^.(m ? op(1))g(r0)g(T0)'An, 
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because g(t/n)'On ' 1jg(t/n)10Onl1 -> 0, because g(.) is bounded. Combining these re- 
sults and noting that P,,A = (A',g(ro)sg(ro)'An)- , 

1 m 
(A.38) = - A'n VPA mg(ro)g(7r)'T - Wl(-v3) =- v3- W(-v3). 

2 s 

Using similar arguments for V3 > 0, we obtain that 

V3 => argmin - W(v)+ - v =i argmax W(v) - 2 - 
lv 

v [~2s J u 2 s 

Thus, with the change of variables w = (m2/s2)v (and noting that V3 = (k - ko)/PA,), 

sS2 d s2 1 
P^( (k- ko) > - argmax -rgmax W() + - w - a A,, m 2 m 2 s m2 mI 2 ) 2 

and then, (A'ng(ro)g(ro)'An)(k - ko) = sm-2 arg max,,{W(w) + wlJ}. U 

Lemmas 

LEMMA 1. Under Al.1, A1.2, A2.1-A2.5, and A2.7, supEjn supoe,,ln-1 X 

t= I( ) r- M(0) || 0, where M(O) is defined by A2.7. 

Proof. By the triangular inequality, 

1 nT 1[nT] 

sup sup - ] (0) - rM(o) - T sup sup - E (t (0)- E [r(0)]) (A.42) 
TE[n 0E? n t=i 7En 6- e n1 t=l 

1 nlT] 
+ sup sup - E E[t (0)] - rM(0) . (A.43) 

TEn 0e n1 t=l 

By A2.7, (A.43) -- 0, whereas (A.42) -> 0 by Al.l and A2.1-A2.5 applying Lemma 
A.3 of Andrews (1993). U 

LEMMA 2. Let o0 C ? be a compact subset of RP, containing neighborhoods of 0o. 
Consider a sequence {0n, n - 1} E 00 such that ,O -- 0o. Then, under Al.], A1.2, 
A2. 1-A2.5, and A.27 it holds that 

[nT] 

sup n-1 *j,(on) - M(0o) -> 0. 
Tern t= 

Proof. By the triangle inequality, the left side of the preceding expression is bounded 
by 

1 [nr] 1 [tn] 
sup - (t(On) - E[t(0O,)]) + sup - E (E[T(0,)]- E[t(00)]) 
rnI n t=l rTnI n t= 

1 [nr] 
+ sup - E[ ,(0o)]- TM(-0o) = (I) + (II) + (III). 

reI n t=l 
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By A2.7, (III) -0 0, whereas (I) 2- 0, by Al.1 and A2.1 A2.5, because 

1 [nT] 

(I) < sup sup - C ((j0) - EL, (O)]) -L> O, 
TGH 0EZ-00 n1 t., 

by Lemma A.3 of Andrews (1993). It remains to study (II): (i) by the tightness condi- 
tion of {F , n > I1, we obtain that n- 1 

'C7 P(Zt (4 Cj) -> 0 as j -* cc, for some se- 

quence of compact sets {Cj,j 1} in Z, and (ii) Vj> 1, 

Z [nr'] 

sup sup n Eti.(6,), i),(60)]I(Z, E C1) 
n 1 rEfi 11 t 

sup IIr(z, On) (zj(, 0o)) 0 for 0, ---> 0 

for a function 4Q) defined in (z,O0) E Z X 0, continuous by All , and thus uniformly 
continuous in the compact set Cj. (iii) By results (i) and (ii), 

1 [nr] 

sup - E[it(On) - ?i,t (0o)1 , as On -_ 0.0 
Tc.n n = 

For convenience in the subsequent discussion, we provide the following definition. 

DEFINITION 2. On a probability space (12, 1P), the sequence of pairs {Y,F t}, 
where 17t is an increasing sequence of o-subfields of Y and the Yt are integrable ran- 
dom variables, is an Lr mixingale if, for r ? 1, there exist sequences of nonnegative 
constants {c,l} and {im}j such that 1m -- 0 as m -* 0, and 

(ii) IlYt - E(Yt(,TFt-m)jj, -( ctj~mil, 

holdfor all t> 0 and m >- 0. When m = O(m-q)for all q > qo, we say that { m} is of 
size -qo. 

Define Si j Y, with So = 0 and construct the random function Vn(i) n 1/2S[nlT]. 
Note that {vn(r),n i 1} belongs to the bounded cadlag function space in RP1 and is 
defined on LI C [0, 1]. The following lemma generalizes the Haijek and Renyi inequality 
to Lr mixingales for r > 1. 

LEMMA 3. Let {ak}k>i be a sequence of decreasing positive constants. 

(3.1) if {Yt, 17} is a Lr mixingale with constants {ct} such that sup,ItnJY,t). < oo and 
(i) 1 < r < 2 with {Jm} of size -1, 

(ii) r = 2 with {4m} of size 2' 

or 
(iii) r > 1 with Y 1 ~k < cc and SUPt',l1KI12 < cc. 
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Then there exists a K < oo such that 

P a. }c ^ + (A.44) Pr{ max akSlj >8< E 
-PK(maP+ < (A.44)a 

m' k'n jnJ m+ 1 

for every E > 0 and m > 0, p = r under (i) or (ii) and p 2 under (iii). 

(3.2) If Yt = rt and {rt7, ft} satisfies Assumption A2.4, there exists a K < oo such 
that 

Pr max sup aklaSkl > < -2K ma2 + a, (A.45) 
n mc<kn aEIRP j=m+ 1 

t 1[= 1a/ 

for every e > 0 and m > 0. 

(3.3) For ak = k-, it holds that both probabilities on the left side of (A.44) and 
(A.45) above are O(m--8 2). 

Proof of (3.1). By the triangle inequality, 

Pr max aaklSk > 8s Pr max aklS >- +Pr max akl- S l > 
^ m'k'^n J ^ m-skISn 2 m'k Skn 2 

(A.46) 

With {ak} decreasing, we have that maxmk,cn ak = am, and the first term of the right 
side will be upper bounded by 

Pr ISml > 2 - a 
- 

P 1Sm|||P2Pa <8 -Pmsup ||Yt P2PaP=e-P KmafP. (A.47) 
2t Pa J t 

P M 

The two inequalities are Markov's and Minkowski's, with p already defined in the lemma 
according to the cases. The last equality sets K1 = 2Psupt YtlJpp. The second term on 
the right side of (A.46) will be bounded by 

Pr max att > - + Pr max (at-ak)Yt > 
m-k-n t=m+ 41 m'k'n t=in+ 1 4 

4 P k p k p 
c 4 ( max , at Yt + max E (at- ak)Yt , (A.48) 

?y ) n Cmzk<'n t=m+l p nrmk'n t=m+ 1P 

by Markov's inequality. Let qlt at Y, Vt. Then, we have that {qlt, Jt} is a mixingale 
with constants clt = ctat and the first summand of (A.48) will be bounded by 

- K2 ? c Pt < - K2suplctp E ap, (A.49) 
?/ t=m+l ? t n t=m+l 

for K2 < oo. With p = r, the first bound is due to Davidson (1994, Theorem 16.11) for 
(i) and to McLeish (1975a, Theorem 1.6) for (ii), and, with p = 2, it is due to Hansen 
(1991, Lemma 2) for (iii). Similar arguments apply for the second term of (A.48), which 
will be upper bounded by 
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4 \P k 4 k 
- K c2t 3 E Cjlt (A.50) 

? ?t=m+l / t=m+l 

for K3 < oo and C2t = ct(at - ak). The last inequality is obtained given that at > 

ak > 0, for all t < k. The result of (3.1) is established with K 
4p max{Kl,max{K2, K3}supt, ct c P}. 

Proof of (3.2). We verify the conditions of (3.1) for this particular case. Because 
{7't} is L2-NED with respect to {wt} of size - with dt = 1, it follows that 

P 2 1/2 p p \1/2 

sup Ia'tYtj\2 sup sup E a2 E a t2f = ht 2 
aEgR aEGRI =1 aEG i=l i=1 / 
ja 1 jaj- 1 a j 1 

by the Cauchy-Schwarz inequality, and similarly, 

/ -p p /2 

sup \ a'rht - E t+,a 't r 2< sup E 2E (ti - Et , 7, 
aGRP oGR \ i=I i=a 1 
aI =1 1=l 1 - 

Ti t |- 2 E -t T dt Vm. 

Therefore, {a'T7t} is also L2-NED of size - and dt = 1 (observe that if a||a| + 1, dt 
supaERP a|| < oo, Vn, t). Furthermore, under Assumption A2.4, {a'Tt} is an L2 mixin- 

gale of - and constants c = dtmaxtn{1, lh K2} (see, e.g., Wooldridge and White, 1988, 
Proposition 2.9). Given that suptn r,t\ 2 < oo, conditions of (3.1)(ii) are fulfilled. 

Proof of (3.3). For ak = k-, the result follows given that E k=m 2 = (m-1). 

LEMMA 4. For Yt-, t, under Al. , A2. 1-A2.4, and A2.8, v,(r) = S/2B (-), where 
= denotes weak convergence, in the D([0,1]) space equipped with the Skorokhod 
metric. Here B(.) is a p-vector of independent Brownian motion processes. The process 
can be defined in C([0,1]), for which there exists an equivalence between the Sko- 
rokhod and uniform metrics. 

Proof. To prove this lemma we use the results of Lemma A.4 of Andrews (1993), 
with the difference that, in this case, the triangular arrays he used are constant across 
the subscript n. Then, we have to prove that the process {v,(r), n > 1} is such that 

(i) Va C IRP,a'Vn.(T) => a'S1/2B(T), 
(ii) {vn(r),n - 1} has asymptotically independent increments. 

To obtain (i), under A2.1, A2.2, and A2.8, we apply Corollary 3.2 of Wooldridge and 
White (1988), which utilizes the results of McLeish (1977). Noting that the mentioned 
corollary yields weak convergence of the standard partial sum process in D([0,1]) with 
the Skorokhod metric and the r-field generated by it, this can be converted into weak 
convergence in D([0, 1]) with the uniform metric and the r-field generated by the closed 
balls under the uniform metric. This is treated by Andrews (1993). To obtain (ii) it will 
be enough to prove that 

(Vn72) -Vn(7r))d (72 - 71)S 0) 

Vn(70) 
- 

0 NS 
? 

0 
C < 71 C 72 l 12 
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The Cramdr-Wold device leads to 

aI v(T2) - a'vin(T) + a2v(Tro) - N(O,(72 - r1)aSa1 + Toa7Sa2), Va1,a2 E R. 

To obtain the preceding result, we use again Corollary 3.2 of Wooldridge and White 
(1988), 

1 [n2] 1 [nTo] 
al vn(72) 

- ^a'vn(7) + aav(7T) = a - + ?2 7 't 
n t=[nl]+ 1 t= 

=> a'S1/2B(72 - 1) + a' S1/2B(70) 

d 
N(O, (T2 - 71)a; Sa + oaSaC2). 

And we get the desired result. 

LEMMA 5. For Yt = -t, under Assumptions A1.1, A2.1-A2.4, and A2.8, there exists 
a K < oo such that, for every e > 0 and large n, Pr{sup supI SUp=R a' vU (T)l > e} C 

-2K. 
llall=l 

Proof. By Lemma 4 and the continuous mapping theorem, sup,aRP a'Vn(r) = 

supE,RP (a'Sa)1/2B(r). Let Y = sup |B(r)|, a process with finite second moment be- 

cause P{sup B(r) < d} = 2(I(d), d - 0, and B(.) is symmetric around zero. Thus, the 
Markov inequality leads to 

Pr sup sup a'l v(r) > e -- Pr Y > sup (a'Sa). 
TI1 aEEIRP sup (a'Sa) 1/2 a ERP 

I acIll= aERP Illall=1 

The Cauchy-Schwarz inequality establishes that (a'Sa) = IS /2al - 1 S 1/2 11l and S 
is a finite matrix by A2.8. The result follows with K = E(Y2)|S1'/21 < co. U 

LEMMA 6. For Yt - t, under Assumptions Al.1, A2.1-A2.4, and A2.8, there exists 
a K < oo such that, for every e > 0 and large n, Pr{sup,R,, a' |Iv(1) - vn(ro) > e} < 

-2K. 
al 

Proof. Lemma 4 yields a'(u,(l) - vu(ro)) -4 a'S1/2B(1 - ro) - N(O, (I - ro)a'Sa). 
Thus, 

Pr sup a' un(l )- (ro)l > 81 -Pr I ZI > 
1/2 c xERP (1 -To) sup (a'Sa) \ 

t IlcII=M l J aElll= 

2 (1 - To) sup (a'Sa), 
2 aR P= 

by Markov inequality, where Z represents the standard normal variable and hence with a 
second moment equal to one. The result follows with K = (1 - 70) S1/211 < oo. U 
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